エッジAIアプリケーション用の Model Library
MERAの開発者は、DNA IPが搭載されたEdgeCortix AIアクセラレータ・チップまたはFPGAに最適化された、事前にトレーニングされたAI推論モデルである当社のModel Libraryを利用することで、すぐに開発を始められます。コードはMERAにドロップされ、すぐに実行または変更できます。アプリケーションには、識別、物体検出、セグメンテーション、ポーズ推定などが含まれます。
Filter by:
Clear Filters
No models are available for the selected combination. Please 'Clear Filters' to search again.
Model
ResNet18-v1.5Framework
PyTorchApplication
ClassificationInput Resolution
224x224Calibration Data
Real-DataGet the Model
Model
ResNet50-v1.5Framework
PyTorchApplication
ClassificationInput Resolution
224x224Calibration Data
Real-DataGet the Model
Model
YoloV3Framework
TFLiteApplication
Object-DetectionInput Resolution
416x416Calibration Data
Real-DataGet the Model
Model
Yolov5sFramework
TFLiteApplication
Object-DetectionInput Resolution
448x448Calibration Data
Real-DataGet the Model
Model
YoloV5mFramework
TFLiteApplication
Object-DetectionInput Resolution
640x640Calibration Data
Real-DataGet the Model
Model
SFA3DFramework
PyTorchApplication
3D-LiDAR-Object-DetectionInput Resolution
608x608Calibration Data
Real-DataGet the Model
Model
EfficientNet-Lite-0Framework
TFLiteApplication
ClassificationInput Resolution
240x240Calibration Data
Real-DataGet the Model
Model
EfficientNet-Lite-2Framework
TFLiteApplication
ClassificationInput Resolution
260x260Calibration Data
Real-DataGet the Model
Model
EfficientNet-Lite-3Framework
TFLiteApplication
ClassificationInput Resolution
280x280Calibration Data
Real-DataGet the Model
Model
EfficientNet-Lite-4Framework
TFLiteApplication
ClassificationInput Resolution
300x300Calibration Data
Real-DataGet the Model
Model
EfficientNetV2-B0Framework
TFLiteApplication
ClassificationInput Resolution
224x224Calibration Data
Random-DataGet the Model
Model
EfficientNetV2-B1Framework
TFLiteApplication
ClassificationInput Resolution
224x224Calibration Data
Random-DataGet the Model
Model
EfficientNetV2-B2Framework
TFLiteApplication
ClassificationInput Resolution
224x224Calibration Data
Random-DataGet the Model
Model
EfficientNetV2-B3Framework
TFLiteApplication
ClassificationInput Resolution
224x224Calibration Data
Random-DataGet the Model
Model
EfficientNetV2-sFramework
TFLiteApplication
ClassificationInput Resolution
224x224Calibration Data
Random-DataGet the Model
Model
MonoDepthFramework
PyTorchApplication
Monocular-Depth-EstimationInput Resolution
384x288Calibration Data
Real-DataGet the Model
Model
U-NetFramework
TFLiteApplication
SegmentationInput Resolution
128x128Calibration Data
Real-DataGet the Model
Model
MoveNet-ThunderFramework
TFLiteApplication
Pose-EstimationInput Resolution
256x256Calibration Data
Real-DataGet the Model
Model
YoloV4-TinyFramework
TFLiteApplication
Object-DetectionInput Resolution
640x640Calibration Data
Real-DataGet the Model
Model
DeepLabEdgeTPU-mFramework
TFLiteApplication
SegmentationInput Resolution
512x512Calibration Data
Real-DataGet the Model
Model
DeepLabEdgeTPU-sFramework
TFLiteApplication
SegmentationInput Resolution
512x512Calibration Data
Real-DataGet the Model
Model
MoveNet-LightingFramework
TFLiteApplication
Pose-EstimationInput Resolution
192x192Calibration Data
Real-DataGet the Model
Model
MobileNetV2-SSDFramework
PyTorchApplication
Object-DetectionInput Resolution
640x480Calibration Data
Real-DataGet the Model
Model
DeepLabEdgeTPU-xsFramework
TFLiteApplication
SegmentationInput Resolution
512x512Calibration Data
Real-DataGet the Model
Model
GladNetFramework
TFLiteApplication
Low-Light-EnhancementInput Resolution
640x480Calibration Data
Real-DataGet the Model
Model
SR-Mobile-Quantization (ABPN) Framework
TFLiteApplication
Super-ResolutionInput Resolution
640x360 to HDCalibration Data
Real-DataGet the Model
Model
YoloV7-QuantizerFramework
MERAApplication
Object-DetectionInput Resolution
640x640Calibration Data
Real-DataGet the Model
Model
YoloV4Framework
TFLiteApplication
Object-DetectionInput Resolution
416x416Calibration Data
Real-DataGet the Model
Model
SCI-QuantizerFramework
TFLiteApplication
Low-Light-EnhancementInput Resolution
1280x720Calibration Data
Real-DataGet the Model
SAKURA-II M.2モジュール&PCIeカード
EdgeCortix SAKURA-IIは、ソフトウェア開発やAIモデル推論タスクのホストシステムに容易に統合できます。
M.2モジュールまたはPCIeカードを予約注文して、ぜひ試してみてください!